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Weak Signals

I In the population model, covariates with non-zero coefficients are recognized as true
signals, while those with zero coefficients are considered false signals, creating a clear-cut
“black and white” distinction.

I However, in finite samples, the presence of minuscule non-zero coefficients introduces a
“gray” area, blurring the lines between true and false signals.

I This gray area represents weak signals – covariates that, individually, exert negligible
influence on the outcome variable.

I The scenario of weak signals is often encountered in economics, as evidenced by the
limited explanatory power observed in empirical regression analyses.

2 / 34



Introduction Model Setup Main Results Simulations Empirics Conclusion

Histograms of R2s in Selected Economics and Finance Journals
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I The histograms depict R2s manually collected from published papers in a selection of
Economics (AER, ECTA, JPE, QJE, RES) and Finance (JF, JFE, RFS) journals in 2022.
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R2s for Portfolio Returns Prediction

OLS-3 PLS PCR ENet GLM RF GBRT NN1 NN2 NN3 NN4 NN5

VW-S&P500 Index -0.11 -0.86 -2.62 -0.38 0.86 1.39 1.13 0.84 0.96 1.80 1.46 1.60
Big Growth 0.41 0.75 -0.77 -1.55 0.73 0.99 0.80 0.70 0.32 1.67 1.42 1.40
Big Value -1.05 -1.88 -3.14 -0.03 0.70 1.41 1.04 0.78 1.20 1.57 1.17 1.42
Big Neutral 0.12 -0.81 -2.39 -0.46 0.41 1.05 1.03 1.33 0.78 1.81 1.93 1.93
Small Growth 0.35 1.54 0.72 -0.03 0.95 0.54 0.62 1.68 1.26 1.48 1.53 1.44
Small Value -0.06 0.40 -0.12 -0.57 0.02 0.71 0.90 0.00 0.47 0.46 0.41 0.53
Small Neutral -0.01 0.78 -0.10 -0.25 0.36 0.41 0.38 0.58 0.55 0.68 0.62 0.72
Big Conservative -0.24 -0.17 -1.97 0.19 0.69 0.96 0.78 1.08 0.67 1.68 1.46 1.56
Big Aggressive -0.12 -0.77 -2.00 -0.91 0.68 1.83 1.45 1.14 1.65 1.87 1.55 1.69
Big Neutral -0.36 -1.65 -3.20 -0.11 0.76 0.99 0.73 0.54 0.62 1.62 1.44 1.60
Small Conservative 0.02 0.75 0.48 -0.46 0.55 0.59 0.60 0.94 0.91 0.93 0.99 0.88
Small Aggressive 0.14 0.97 0.06 -0.54 0.19 0.86 1.04 0.25 0.66 0.75 0.67 0.79
Small Neutral -0.04 0.53 -0.17 0.08 0.45 0.23 0.20 0.73 0.60 0.81 0.73 0.80
Big Robust -0.58 -0.22 -2.89 -0.27 1.54 1.41 0.70 0.60 0.84 1.14 1.05 1.21
Big Weak -0.24 -1.47 -1.95 -0.40 -0.26 0.67 0.83 0.24 0.60 1.21 0.95 1.07
Big Neutral -0.08 -1.02 -2.77 -0.21 0.10 1.46 1.44 0.95 1.00 1.78 1.70 1.73
Small Robust -0.77 0.77 0.18 -0.32 0.41 0.27 -0.06 -0.06 -0.02 0.06 0.13 0.15
Small Weak 0.02 0.32 -0.28 -0.25 0.17 0.90 1.31 0.84 0.85 1.09 0.96 1.08
Small Neutral 0.22 1.05 0.09 0.03 0.48 0.76 0.97 1.08 1.04 1.19 1.12 1.18
Big Up -1.53 -2.54 -3.93 -0.21 0.40 1.12 0.68 0.46 0.85 1.28 0.99 1.05
Big Down -0.10 -1.20 -2.05 -0.26 0.36 1.09 0.77 0.48 0.89 1.34 1.17 1.36
Big Medium 0.24 1.38 0.57 0.01 1.32 1.56 1.37 1.60 1.76 2.28 1.83 2.01
Small Up -0.79 0.42 -0.36 -0.33 -0.33 0.31 0.40 0.23 0.60 0.67 0.55 0.61
Small Down 0.40 1.16 0.47 -0.46 0.62 0.93 1.20 0.80 0.97 0.97 0.97 0.96
Small Medium -0.29 0.03 -0.61 -0.56 -0.20 0.11 0.18 0.05 0.29 0.41 0.30 0.45

Source: “Empirical Asset Pricing via Machine Learning”, Gu, Kelly, and Xiu, RFS (2020)
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Predictions are Economically Meaningful
Market-timing Strategy’s Sharpe ratio: 0.77; Stock-picking Strategy’s Sharpe ratio: 1.35

1987 1990 1993 1996 1999 2002 2005 2008 2011 2014 2016  
  
  
 S

h
o
rt

 P
o
si

ti
o
n
  
  
  
  
  
  
  
 L

o
n
g
 P

o
si

ti
o
n
  
  
  
  
  
 

4

2

0

2

4

6

8

OLS-3+H PLS PCR ENet+H GLM+H RF GBRT+H NN3 SP500-Rf solid = long dash = short

Source: “Empirical Asset Pricing via Machine Learning”, Gu, Kelly, and Xiu, RFS (2020)
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Weak Signals and High Dimensionality

I Incorporating many weak signals into a model can result in overfitting, and, consequently,
compromise predictive performance.

I Machine learning methods have proved effective in mitigating overfitting and discerning
true signals from fake ones when the true signals are strong.

I These methods employ regularization techniques, such as penalizing `1 or `2 norms of
model parameters, to achieve this.

I A pivotal question arises: Can machines learn weak signals?

I Only if they can, can they outperform the (naive) baseline zero-estimator!
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Caveats on the Use of Lasso

I Bayesian regression with a Spike-and-Slab prior on various economic datasets by Giannone,
Lenza, and Primiceri (2022) suggests that sparsity may be an illusion, as optimal
predictive models often rely on a large number of covariates.

I Kolesar, Muller, and Roelsgaard (2024) highlight limitations of sparsity-based estimators,
including their lack of invariance to reparameterization and sensitivity to normalizations
that are otherwise innocuous to OLS.
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Model Setup

We study the following linear model:

y = Xβ 0 + ε,

where X ∈ Rn×p, β 0 ∈ Rp and ε ∈ Rn are random variables.

I High dimension: p/n→ c0 ∈ (0,∞].

I Weak signal: ‖β 0‖2 �P τ → 0.

The choice of `2-norm is partially due to its close relationship with the widely-adopted R2

metric in regression analysis, which provides a familiar and intuitive understanding of signal
strength.
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Assumptions on X and ε

I The covariates X ∈ Rn×p are generated as X = Σ
1/2
1 ZΣ

1/2
2 for an n×p matrix Z with i.i.d.

standard Gaussian entries, deterministic n×n and p×p positive definite covariance
matrices Σ1 and Σ2. There exist some positive constants c1,C1,c2,C2 such that
c1 ≤ λi (Σ1)≤ C1 for 1≤ i ≤ n and c2 ≤ λi (Σ2)≤ C2 for 1≤ i ≤ p.

I ε = Σ
1/2
ε z, where z is composed of i.i.d. variables with mean zero, variance one and fourth

moment finite. In addition, the n×n matrix Σε satisfies cε ≤ λi (Σε )≤ Cε for 1≤ i ≤ n.
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Assumptions on β0

I
√
pτ−1β 0 comprises i.i.d. random variables, each following a prior probability distribution

F belonging to the class F .
I The class F is defined such that any included random variable can be represented as

q−1/2b1b2, where b1 and b2 are independent, b1 follows a binomial distribution B(1,q), and
b2 is a sub-exponential random variable with a mean of zero and a variance denoted as σ2

β
.

I This assumption allows for important classes of models, such as a spike-and-slab prior.
I Under Gaussian noise, it is well-established (e.g., (Hastie, Tibshirani, and Friedman(2009)))

that Ridge is equivalent to posterior mean under Gaussian priors, while Lasso is the same as
posterior mode under Laplace priors.

I X , ε, and β 0 are asssumed to be independent of each other.
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Bayes Prediction Risk

For any predictor derived from an estimator β̂ , the prediction error is:

EF (ynew− ŷnew)2 = σ
2
ε +EF

[
xnew(β̂ −β 0)

]2
= σ

2
ε +EF‖Σ1/2

2 (β̂ −β 0)‖2.
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Existing Results for Strong Signals: Lasso, Ridge, vs Zero

Under strong signals, i.e., τ = 1, and suppose that Σ1, Σ2 and Σε are identity matrices,
p/n→ c0 ∈ R+, significant progress has been made in understanding the asymptotic behavior
of Bayes risk.
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I In this figure, we fix q = 0.2 and vary the ratio p/n as well as ‖β0‖2.
I Both Lasso and Ridge outperform zero.
I The disparity becomes less pronounced as ‖β 0‖→ 0 and the ratio p/n→ ∞.
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Existing Results for Strong Signals with Varying Sparsity

In this figure, we fix p/n = 1 and vary the sparsity parameter q as well as ‖β 0‖2.
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Again, as ‖β 0‖→ 0, the ratio of the Bayes risk for both Ridge and Lasso compared to zero
converges to one.
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Relative Prediction Error

I The zero estimator can be considered as a particular case of both Ridge and Lasso
estimators when a sufficiently large tuning parameter is chosen.

I Merely comparing their Bayes risk ratios may not be an effective approach to tell any
differences among these estimators.

I In light of this, for any estimator β̂ , define the higher-order relative error (compared with
zero):

∆(β̂ ) = pn−1
τ
−2(‖Σ1/2

2 (β̂ −β 0)‖2−‖Σ1/2
2 β 0‖2).

I If ∆(β̂ ) > 0 w.p.a.1: β̂ performs worse than the zero estimator.

I If ∆(β̂ ) < 0 w.p.a.1: β̂ surpasses the performance of the zero estimator.
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Predictive Performance of Ridge

Consider the ridge estimator,

β̂r (λn) = arg min
β

1
n
‖y−Xβ‖2 +

pλn

n
‖β‖2.

I Special cases: λn = 0 (Ridgeless).
I p ≤ n: OLS
I p > n: Minimum-norm interpolation, see Bartlett, Long, Lugosi, and Tsigler (2020)

I When the tuning parameter λn = τ−1λ , we have

∆(β̂r (λn))
P−→ α

∗ := 2θ2σ
4
x

(
σ2

ε θ1

2λ 2 −
σ2

β

λ

)
.

15 / 34



Introduction Model Setup Main Results Simulations Empirics Conclusion

The Optimal Ridge Can Beat Zero!
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Predictive Performance of Lasso

Consider the Lasso estimator,

β̂l (λn) = arg min
β

1
n
‖y−Xβ‖2 +

λn√
n
‖β‖1.

I We have, w.p.a.1,
cα ≤∆(β̂l (λn))≤ Cα ,

where cα and Cα are the solutions to the equation (in terms of x):

x−
√

2Cλ

c2
x =− Cλ

100C2
.
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The Optimal Lasso is Zero!
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Assessing Signal-to-noise Ratio

In practice, the out-of-sample R-squared, defined as

R2
oos = 1− ∑i∈OOS(yi − ŷi )

2

∑i∈OOS y
2
i

,

can serve as an indicator of the signal-to-noise ratio.

I Assuming that Σ1 = I, Σε = σ2
ε I, and the out-of-sample data follows the same DGP as the

in-sample data, if noosp−2n2τ2→ ∞, where noos is the size of the out-of-sample data, then
for the optimal Ridge estimator, it holds that

R2
oos(β̂r (λ

opt
n )) = p−1nθ2(R2)2 (1+oP(1)) ,

where R2 denotes the population R2, given by τσ2
x σ2

β
/(τσ2

x σ2
β

+ σ2
ε ) in this context.
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Mixed Signal Strengths and Alternative Benchmarks

The previous slides study the scenarios where all signals are weak and the zero estimator serves
as the benchmark model. This slide expands our analysis to include models where potentially
strong signals serve as benchmarks. Consider the model

y = W γ +Xβ0 + ε

I W ∈ Rn×d represents a predefined set of covariates. These covariates include potentially
strong signals and form the basis of the benchmark model.
I Each covariate within W is assumed to have a finite second moment. Furthermore, the

eigenvalues of n−1W>W are lower bounded by some positive constant and d = o
(
n2p−1τ

)
.

I X is generated as X = Wη0 +U
I The triplet (U,β0,ε) is assumed to follow the same distribution as (X ,β0,ε) in the previous

slides.

I new benchmark predictor: ŷnew
b = (wnew )> γ̂, where γ̂ =

(
W>W

)−1
W>y
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Ridge-augmented Regression

We study the Ridge-augmented regression:

(β̂ (λn), γ̂) := arg min
(β ,γ)

1
n
‖y −W γ−Xβ‖2 +

pλn

n
‖β‖2

and its prediction ŷnew = (wnew )> γ̂ (λn) + (xnew )> β̂ (λn).

I It holds that

pn−1
τ

2
(
EF

[
(ŷnew −ynew )2 |I

]
−EF

[
(ŷnew

b −ynew )2 |I
])

P−→α
∗= 2θ2σ

4
x

(
σ2

ε θ1

2λ 2 −
σ2

β

λ

)
,

where I denotes the information set generated by (W ,X ,y ,γ0,β0).
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Strong Signals vs Weak Signals: Summary

Strong Signals Weak Signals

OLS/Interpolation > zero ? Yes (Hastie et al. (2022)) No
Lasso > zero ? Yes (Bayati and Montanari (2011)) No
Ridge > zero ? Yes (Dobriban and Wager (2018)) Yes

Cross-validation valid ? Yes (Liu and Dobriban (2020)) Yes
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Simulation Results for Ridge and Lasso

The histograms of ∆(β̂ ) for Ridge (top) and Lasso (bottom) (n = 500, p = 300):
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Additional simulation results
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Simulations for Extremely Sparse Scenario

The simulation results below show that our conclusion—Lasso performance deteriorates when τ

is small—holds even for extremely sparse cases.

Lasso Ridge
q R2 (%) Q1 Q2 Q3 #Zero Q1 Q2 Q3 #Zero
0.20 5% -0.127 0.000 0.521 360 -0.992 -0.501 -0.129 97
0.10 5% -0.871 0.000 0.187 327 -0.981 -0.475 -0.077 113
0.10 2% 0.000 0.000 3.435 493 -0.622 0.000 0.440 237
0.05 5% -2.688 -0.305 0.000 255 -1.037 -0.387 0.000 130
0.05 2% 0.000 0.000 2.948 473 -0.642 0.000 0.426 238
0.02 5% -6.542 -2.050 0.000 215 -1.304 -0.230 0.000 149
0.02 2% 0.000 0.000 1.695 432 -0.605 0.000 0.625 254
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Simulation Experiments for Advanced Machine Learning Methods

We expand our inquiry into the relevance of our theory to nonlinear machine learning
methodologies such as Random Forest (RF), Gradient Boosted Regression Trees (GBRT), and
Neural Networks (NN), through simulation experiments. We simulate the following DGP with
f (x) = tan(x)

yi =
p

∑
j=1

β0,j f (Zij ) + εi , i = 1, . . . ,n.

I Generate Zij by applying an inverse transform to Xij , which was previously simulated.
Specifically, Zij is defined as f −1(Xij ), where the design matrix X is constructed using the
identical DGP as previously outlined.

I Both the coefficients β0 and the error term εi follow the same DGPs as before.

I We analyze the benchmark scenario where n = 500,p = 300 and report the the relative
prediction error, pn−1τ−2n−1

oos ∑i∈OOS

(
(yi − ŷi )

2−y2
i

)
.
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Simulations with Tree Algorithms

The histograms of higher order relative prediction error for Random Forest (top) and GBRT
(bottom) (n = 500, p = 300):
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Relative Error Comparisons for Neural Networks

The histograms of higher order relative prediction error for NN(`2) (top) and NN(`1) (bottom)
(n = 500, p = 300):
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Equity Premium

Dataset constructed by Welch and Goyal (2008).

I Dependent variable: US market (S&P 500) return
I Possible predictors: 16 lagged financial and macroeconomic indicators
I Sample: 74 annual time-series observations from 1948 to 2021
I 10−fold cross-validation
I Expanding window method, 57 exercises (following Giannone, Lenza and Primiceri (2021))

Ridge Lasso OLS/Ridgeless RF GBRT NN(`2) NN(`1)
R2
oos 0.8% −12.19% −81.08% 1.30% −14.21% 1.41% −10.31%
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The Cross Section of Expected Returns

Dataset constructed by Gu, Kelly and Xiu (2020).

I Dependent variable: US Individual Equity returns
I Possible predictors: 920 covariates, including characteristics, macroeconomic predictors

and their interactions
I Sample: Monthly returns from CRSP for all firms listed in the NYSE, AMEX, and

NASDAQ from 1957−2021, with the average number of stocks per month exceeding
6,200

I 2−fold cross-validation
I Expanding window, 35 exercises (following Gu, Kelly and Xiu (2020))

Ridge Lasso OLS/Ridgeless RF GBRT NN(`2) NN(`1)
R2
oos 0.19% 0.10% −1.25% 0.10% −0.30% 0.26% 0.14%

Using a stock selection portfolio strategy, NN(`2) can achieve a sharp ratio at 2.13, followed by
Ridge regression (1.64) and NN(`1) (1.55).
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Conclusion

I When the field of Economics and Finance adopted Machine Learning from Computer
Science, there were concerns about its efficacy given the low signal-to-noise ratio. This
paper offers some thoughts on this matter.

I While Lasso is often regarded as a modern equivalent to OLS, we should exercise caution
when applying it in economics and financial settings, where signals are often weak.

I Giannone, Lenza and Primiceri (2021) argues that sparsity is an illusion. Our findings
suggest that signal weakness is a more prevalent issue, providing a complementary
explanation for the observed poor performance of Lasso.

30 / 34



Introduction Model Setup Main Results Simulations Empirics Conclusion

Simulation Results for Ridge with Fixed Tuning Parameters

The histograms of ∆(β̂ ) for Ridge (p/n = 3/5, q = 0.2, R2 = 5%, λ opt = 1):
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Simulation Results for Lasso with Fixed Tuning Parameters

The histograms of ∆(β̂ ) for Lasso:
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Simulation Results for Optimal Ridge’s R2
oos

The boxplots of R2
oos for optimal Ridge (p = 300, n = 500, q = 0.2, R2 = 5%):
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Why Lasso Fails? Type I Error

I The failure to identify true signals has a minor impact since zero does not utilize any true
signals. The primary challenge lies in its failure to adequately filter out irrelevant signals.
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